dit dah delta token: Statistical Models of Music and Language Interfering via
Morse Code

Victor Shepardson
Intelligent Instruments Lab
University of Iceland
victorshepardson@hi.is

ABSTRACT

dit dah delta token is a live-coding performance using sta-
tistical machine learning models and Morse code as ma-
terial. In the piece, a large language model and a MIDI
model co-generate a text which is also a musical rhythm,
combining probabilities over each durational element. In
this paper, we explain the method in detail and reflect on
the composition as a piece of music.

1. INTRODUCTION

Large-scale generative machine learning has rapidly be-
come a major paradigm for artificial intelligence, drawing
intense interest in the arts. In particular, so-called language
models for sequential domains like text, audio or symbolic
music are increasingly part of computer music practice, at
both the critical [1] and technical [2] ends.

This paper documents dit dah delta token, a performance
making a playful inquiry into the aesthetics of language
models. The central question is how Morse code, a much
older technology, can be used to make artistic interven-
tions on contemporary language models. Our use of Morse
is technically arbitrary, but conceptually motivated by the
original performance site (Section 5). Morse code relates
text to rhythm, with sequences of long and short elements
corresponding to characters in an alphabet. In dit dah delta
token, a text and a MIDI-based musical performance are
co-generated by a pair of statistical language models con-
ducted by a live-coding performer. Using Morse code, a
music model and a text model are coaxed to ‘speak through
the same mouth’, as the same generated sequence tries to
be simultaneously a text and a musical rthythm.

Section 2 supplies background on Morse code and the
generative models used in this project. In section 3, a
method is described for combining probability distribu-
tions from a text and a MIDI model. Finally, section 4
describes the musical performance.

2. BACKGROUND
International Morse code [3] is a method for encoding texts

into a binary series of high and 0w segments of different

Copyright: ©2025 Victor Shepardson et al. This is an open-access ar-

ticle distributed under the terms of the Creative Commons Attribution

License 3.0 Unported, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are
credited.

Thor Magnusson
Intelligent Instruments Lab
University of Iceland
thormagnusson@hi.is

lengths. A N&h segment is either one or three time units
long (lu or 3u), making either a dit (-) or dah (-). Se-
quences of elements correspond to characters, for example
in the famous ‘SOS’ or -+ - — — — - -« .

A 10w segment of length 1u separates high elements, with
longer versions also terminating a character (3u) or a word
(7u). For example, writing ‘I’ for 1u high and <’ for 1u 1ouw,
SOS expands to ‘LLLLHLHLLLL......”.

In physical communication systems, and 1,y are of-
ten voltage levels in a circuit, as in the telegraph. But they
may also be the presence and absence of a signal, such as
a tone. An obvious mapping from Morse code to music is
to let M8 be a note while 1.y, is a rest, evoking the familiar
beeping of telegraph Morse.

high

2.1 Language Models

Deep learning-based statistical models of text have become
capable at a surprising breadth of tasks, including machine
translation, summarization, and question answering, sim-
ply by training on vast corpora of text from the internet
and framing each task in terms of text completion. Chat
interfaces for LLMs have quickly become ubiquitous tools
since the introduction of ChatGPT in late 2022. Suddenly,
they are used by millions of people, while surrounded by
folklore and controversy regarding the nature of their ap-
parent intelligence.

We don’t use LLMs to generate music per se, rather ex-
ploring how they react to deep coupling to a MIDI model.
For this purpose, we want the largest language models we
can feasibly run locally. Mamba [4] is a family of LLM
based on state-space models in place of the usual Trans-
former architecture. Mamba models are comparatively ef-
ficient and low-latency, and are available in multiple sizes
with open source code and publicly available weights, mak-
ing them ideal for developing our performance software.

2.2 MIDI Models

Many of the same statistical modeling techniques applied
to text are also used to model music, on either an acoustic
signal or symbolic level [2]. Unlike text, music involves
timing and duration. However, elapsed time can be repre-
sented by numbers or symbols, just as in music notation,
enabling the application of language modeling methods.
Notochord [5, 6] is a model for MIDI sequences which
models polyphonic, multi-part music from large datasets,
within the constraint that each MIDI event is processed at a
realtime latency of about 10 milliseconds. It models MIDI
Note On and Note Off events, each broken in four parts: a

mailto:victorshepardson@hi.is
mailto:thormagnusson@hi.is
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

MIDI note number (pitch), a velocity, an elapsed time since
the previous event, and an operative program number.

Together, Mamba and Notochord supply the material for
extemporaneous play with language model aesthetics in dit
dah delta token.

3. COMBINING TOKEN AND RHYTHM
PROBABILITIES

The Mamba language model (LM) and Notochord MIDI
model (MM) are both autoregressive: given a partial se-
quence, they compute a probability distribution over the
next element in the sequence, P(z; | 2o, ;—1). In order to
sample ‘from both models at once’, the two model distri-
butions over the next element can be multiplied together,
to favor sequences which look plausible to both models.

However, the LM and MM operate in different domains.
The LM models text with a discrete set of tokens, each
made up of a variable number of characters. Meanwhile,
the MM models music via MIDI Note On and Note Off
events and the elapsed time between them. These can be
related using Morse code, which represents text characters
with sequences of durations. Still, the MM works at a finer
granularity than the LM: each Note On or Note Off makes
either a dit or dah hish segment, or an interelement, inter-
character, or interword gap 1o segment. It takes one or
more pairs of elements and gaps to form a character, and
one or more characters to form an LM token.

Though the Notochord model can deal with polyphonic
and multichannel MIDI, this application only uses mono-
phonic lines. Thus, in the exposition here we ignore the in-
strument identity, and can assume that Note On and Note
Off events always alternate. Furthermore, while velocity
and pitch are sampled from the MM and contribute to the
music, they don’t interact directly with the LM and require
no special handling. Therefore, we discuss only the MM’s
model of durations in the following sections.

To combine the LM and MM model distributions, we
need to compute the distribution over time deltas according
to the LM at each (shorter) step of the MM. At the same
time, we must constrain the MM (LM) only to generate
rhythms (texts) which encode (can be encoded to) Morse.

3.1 Notation

A Morse sequence can be written as a series of segments
h. These are alternating lu dits or 3u dahs written as ‘d’,
and lu, 3u or Tu gaps written ‘g’:

h17h27"h2n:dlvglv"dn)gn (1)

The Morse sequence encodes a text, which can be written
as a series of language model tokens 1, . . t;, each of which
is made up of individual characters ¢t , .. c;

We can mix these notations to write a Morse sequence
with some elements at the end which do not yet form com-
plete tokens or characters. For brevity, we write s} to
denote a sequence of ¢ — 1 tokens, followed by j — 1 char-
acters beginning the ith token, and £ Morse segments be-

ginning the jth character:

i i
ti,h Cl, .. Cj71

dk 179k 1

Scij =11,..
<ij 1 (2)

S<ijk = 8<1j7d1 7g1 I

Thus, g 7 denotes the kth gap in the jth character of the
ith token.

3.2 Token Tree Traversal

At the start of generation, and anytime a token is com-
pleted, we query the LM for the probability distribution
over next tokens. First, any tokens which don’t encode
to Morse are excluded, i.e., any tokens containing charac-
ters which aren’t in our Morse alphabet of lowercase latin
letters and limited punctuation, and any tokens containing
multiple consecutive spaces.

From the remaining tokens, we construct a prefix tree:
each token is a node in the tree, with a child for each string
which is identical but longer by one character. Some inter-
mediate nodes don’t correspond to tokens and get a prob-
ability of zero; otherwise probabilities of each token come
from the LM.

3 \P(0)=0.0026

= 6 h
- ?

P(" codin \g) 0.013
Figure 1. Example token subtree for the prefix *“ cod".
By summing the model probabilities over each subtree,

we can compute the distribution of probability of each next
character according to the LM:

PLM(C; | S<ij) x Z P

titci”j

(ti | t1.i-1) 3

Where t; = ¢{_; denotes that the character sequence ¢}
is a prefix of (or equal to) a potential next token ¢;.

3.3 Morse Tree Traversal

As individual time-deltas are sampled in the MM domain,
they begin to form a character in Morse code, which we
track by traversing a binary Morse code tree. In the Morse
tree, nodes are characters of the alphabet (excluding the
space character). The children of each node are the two
characters appending either one more dit or dah 8" ele-
ment.

O

P(+)=0.997 "~ P(=)=0.00259

Figure 2. Partial Morse tree corresponding to Figure 1. Character proba-
bilities computed over token subtrees have been assigned to nodes in the
Morse tree, and now Morse element probabilities can be computed over
the dit and dah subtrees.

Each Morse node is populated with the character prob-
ability computed over the current token subtree, and by
summing Morse subtrees we arrive at probabilities for each
time delta specifying the duration of a M&" segment:

Py (d | 5<ijk) x Z Py (Cj | 8<ij) “

Cjtdl.,k

Where d;. denotes the kth dit or dah element in the next
unfinished character c;.

What about the other half of MM time-deltas, which indi-
cate the length of 1.y, segments? There are three lengths of
low seégment: interelement gap lu; intercharacter gap 3u;
interword gap (i.e. space character 7u). If the next gap
is 3u or Tu, it implies that the current character is com-
plete. Conversely, if the next gap is lu, it means the cur-
rent character is unfinished. Thus, the LM probability of a
character-terminating gap is the ratio of the character prob-
ability at the current Morse node to the sum over the whole
subtree:

Pule; =dik | s<ij)

)]
PLM (Cj =dyk | 5<ij)

PLM (gk > lu | S<ijk) =

Where g;; denotes the kth gap within, or terminating, the
next character ¢;. If a 1u gap is sampled, traversal of the
Morse tree continues with the next 8" segment. Other-
wise, the current node in the Morse tree becomes the next
character, which advances traversal of the token tree, pos-
sibly completing a token.

3.4 End of Token Sampling

Whenever a character is finished, the token tree is traversed.
If we’ve reached a leaf node, the token is complete. Oth-
erwise, we need to decide whether the token is completed
or continues. This works analogously to testing the end of
each Morse character in equation (5): we compare proba-
bilities of the current node in the token tree with the prob-
ability of its entire subtree, and randomly sample whether
to stop. When a token is complete, we feed the completed
token to the LM, query for next token probabilities, and re-
set the token tree, also recomputing character probabilities
for the Morse tree.

3.5 Space Handling

In the Mamba tokenizer, whitespace occurs only at the be-
ginning of tokens. So, we resolve character-terminating
gaps to either 3u or 7u only once a token ends. The LM
probability of a 7u versus 3u gap is the relative probability
of the next character being a space versus anything else,
according to the token tree and equation (3).

When a 7u rather than 3w gap is sampled, a space char-
acter is also inserted and the token tree is traversed to the
subtree beginning with a space before continuing to the
next &b segment.

3.6 Music Model Probabilities

The Notochord models the elapsed time between consec-
utive MIDI events. It parameterizes a cumulative distribu-
tion function f,,,, over durations, meaning the probability
mass can easily be computed over a given range. We use

this fact to discretize time into the 1u, 3u and 7w durations
of Morse code. Omitting indices for brevity,

PMM(h =1lu ‘ :) X fMM(1'5u | :) - fMM(O'5u | :)
PMM(h =3u ‘ :) X fMM(4'5U’ | ') - fMI\/I(1'5U’ | ') (6)
PMM(g =Tu ‘ :) x1- fMM(4'5u ‘)

Where h,, is the nth Morse segment, i.e. h, = d(n41)/2
for odd n and h,, = g,, /- for even n.

At each time step, the MM is conditioned on all previ-
ous MIDI events and the globally selected MIDI program
(General MIDI instrument).

3.7 Combining Model Probabilities

For each MIDI event, we can now compute the probability
of each possible duration according to both LM (equations
4,5) and MM (equation 6). All that remains is to combine
P_,, and P,;,, into one distribution before sampling.
This can be accomplished by multiplying P, ,, and P,
together, then normalizing so probabilities sum to 1. We
also include separate temperature parameters so the rela-

tive influence of MM and LM can be tuned:

1 1
()7 P () (N
By merging LM probabilities into sampling of time deltas
in this way, we produce a MIDI sequence which attempts
to make sense simultaneously as music and as a text.

P(\)xP

MM

4. DIT DAH DELTA TOKEN

The technique described in Section 3 was developed con-
currently with a musical piece entitled dit dah delta token.

home buthis habitual husbandry hashim bucking
intrusionshis heuristic hubs hishus|

Figure 3. Visual element for one voice.

After some experimentation with very low latency and
live MIDI input, it was instead decided to take advantage
of the precise machinic rhythm of algorithmically gener-
ated Morse code, while also enabling the use of larger lan-
guage models, by buffering several MIDI events ahead to
enable precise timing. This soon led to the idea to run mul-
tiple instances of the software at once, which would act
independently, but always remain in a precise rhythmic re-
lationship via the setting of w. This was found to give a
satisfying degree of serendipity and performative latitude
in the layering of otherwise often drab and random sound-
ing MIDI lines, without detracting from the intention to let
the models speak for themselves.

dit dah delta token is performed in a brutalist live-coding
style, with the performer navigating a multi-pane terminal,

running and stopping instances of the software from the
command line. A visual element displays the text and a
graphic representation of the corresponding Morse code in
time with the sound (Figure 3). The text is colored to show
the boundaries between tokens, so that the token, charac-
ter, Morse, and musical layers can be simultaneously per-
ceived. This is printed directly into the terminal panes,
alongside the MIDI stream running through fluidsynth.

The performer starts each instance with a text prompt
(e.g., “morse code is”) which the models continue. The
performer decides when to start and stop each instance,
chooses which instrument each one plays, and writes new
prompts in response to the texts generated by the mod-
els. Each performance is unique, due to both random sam-
pling of the language models and improvisation by the per-
former. Documentation can be viewed online. !

4.1 Implementation

The time unit « was chosen to be 50 milliseconds, which
is fast enough to maintain interest, but slow enough to run
the models comfortably in real time and for many of the
instrument sounds to work well.

The software is implemented into the notochord open
source Python package from version 0. 5. 7, and is run on
a MacBook Pro computer during the performance. MM
is a Notochord model 2 running on CPU, while LM is a
Mamba model ® running on the GPU.

Both models are pre-trained on large scale internet data.
For Notochord, the Lakh MIDI dataset [7], contains MIDI
Program Change events indicating the standard General
MIDI instruments, so we use fluidsynth* for audio syn-
thesis, which supplies the full range of instruments with
vintage MIDI aesthetics appropriate to the dataset.

5. DISCUSSION

dit dah delta token was inspired by a collaboration with the
Loftskeytastodin museum in Reykjavik, which formerly
housed the city’s radio equipment. It was first performed
in Loftskeytastodin in November 2024, then again in the
ErkiTi® computer music festival.

We preferred to leave digits out of the Morse alphabet,
finding that the models would often sample long strings
of digits which were less interesting to read. The music
model has a strong preference for making simple rhythms,
particularly liking the letters h / ----> and ‘0 / — — — =,
which are the longest possible runs of the same element be-
fore a longer gap must occur. Often the letter ‘h’ becomes
gradually more prominent until entering a loop repeatedly
sampling only ‘h’, or some short cycle of tokens, with the
music model seeming to dominate. Yet occasionally, the
language model does continue a text for a long time with
no persistent thythm; either model might become very un-
certain after seeing a certain amount of nonsense, leaving
the other model with most of the influence.

The constraints each model imposes on the other limit
their performance from an objective point of view. How-

'https://www.youtube.com/playlist?list=
PL8pgdxhelhfidHb_AteyT9v358kZ7LmDz

2notochordﬁlakh75OGfdeep

3 state-spaces/mamba-1.4b-hf

4https://www.fluidsynth.org

ever, the tension between models an ensuing failures are
precisely what generates interest and humor in the piece.

6. CONCLUSIONS

dit dah delta token is a playful performance using modern
statistical machine learning models as a material. In the
process of composing it, we learned about the agencies and
detail latent in this material. Our process was technically
rigorous, yet artistically whimsical; our posture toward the
technology, informed but skeptical, seeking to recover a
space for absurdity and play amid the machinery. We hope
for some of our curiosity to be transmitted to an audience,
and satisfied in turn by this paper and our open source soft-
ware.

Acknowledgments

The Intelligent Instruments Lab is supported by the Euro-
pean Research Council (ERC) as part of the Intelligent In-
struments project (INTENT), under the European Union’s
Horizon 2020 research and innovation programme (Grant
agreement No. 101001848). This research was also sup-
ported by an NVIDIA hardware grant.

7. REFERENCES

[1] B. L. T. Sturm et al., “Al Music Studies: Preparing
for the Coming Flood,” AIMC 2024, Aug. 2024.
[Online]. Available: https://aimc2024.pubpub.org/pub/
ej9b5Smvl/release/1

[2] Y. Ma et al., “Foundation Models for Music: A
Survey,” Aug. 2024, arXiv:2408.14340 [cs, eess].
[Online]. Available: http://arxiv.org/abs/2408.14340

[3] “International Morse Code Recommendation,” Inter-
national Telecommunication Union, Tech. Rep. ITU-R
M.1677-1, 2009.

[4] A. Gu and T. Dao, “Mamba: Linear-Time Sequence
Modeling with Selective State Spaces,” May 2024,
arXiv:2312.00752 [cs]. [Online]. Available: http:
/larxiv.org/abs/2312.00752

[5] V. Shepardson, J. Armitage, and T. Magnusson,
“Notochord: a Flexible Probabilistic Model for
Embodied MIDI Performance,” in Proceedings of the
Ist Conference on AI Music Creativity, 2022. [Online].
Available: https://zenodo.org/record/7088404

[6] J. Armitage and V. Shepardson, “Augmenting the
Expressivity of the Notochord Generative MIDI
Model for Arca’s The Light Comes in the Name of
the Voice" Magnetic Resonator Piano Installation,”
in AIMC 2024, 2024. [Online]. Available: https:
/laimc2024.pubpub.org/pub/0lh6s86¢c/release/1

[7] C. Raffel, “Learning-Based Methods for Com-
paring Sequences, with Applications to Audio-to-
MIDI Alignment and Matching,” Ph.D. dissertation,
Columbia University, 2016.

https://www.youtube.com/playlist?list=PL8pgdxhelhfi4Hb_AteyT9v358kZ7LmDz
https://www.youtube.com/playlist?list=PL8pgdxhelhfi4Hb_AteyT9v358kZ7LmDz
https://www.fluidsynth.org
https://aimc2024.pubpub.org/pub/ej9b5mv1/release/1
https://aimc2024.pubpub.org/pub/ej9b5mv1/release/1
http://arxiv.org/abs/2408.14340
http://arxiv.org/abs/2312.00752
http://arxiv.org/abs/2312.00752
https://zenodo.org/record/7088404
https://aimc2024.pubpub.org/pub/0lh6s86c/release/1
https://aimc2024.pubpub.org/pub/0lh6s86c/release/1

	 1. Introduction
	 2. Background
	2.1 Language Models
	2.2 MIDI Models

	 3. Combining Token and Rhythm Probabilities
	3.1 Notation
	3.2 Token Tree Traversal
	3.3 Morse Tree Traversal
	3.4 End of Token Sampling
	3.5 Space Handling
	3.6 Music Model Probabilities
	3.7 Combining Model Probabilities

	 4. dit dah delta token
	4.1 Implementation

	 5. Discussion
	 6. Conclusions
	 7. References

