
Autocoder: a Variational Autoencoder for Spectral Synthesis

David Brynjar Franzson
Intelligent Instrument Lab

Iceland University of the Arts
david.brynjar@gmail.com

Victor Shepardsson
Intelligent Instrument Lab

Iceland University of the Arts
victor@lhi.is

Thor Magnusson
Intelligent Instrument Lab

Iceland University of the Arts
thor.magnusson@lhi.is

ABSTRACT

We introduce the Autocoder, a simple machine learning
tool for spectral synthesis and sound manipulation. The
Autocoder is a creative framework that takes a sound ––
harmonic or inharmonic, monophonic or polyphonic ––
learns its surface features such as harmony, pitch and tim-
bre, and generatively synthesizes a continuous soundscape
in real-time, based on the trained model.

1. INTRODUCTION

A significant amount of energy has gone into developing
generalized synthesis models based on large corpora of
real–world sounds. These models often sacrifice local de-
tail in order to capture the vast differences found in these
large sets of data, making these models less than optimal
as tools for producing case-specific high-quality sound out-
put.

Retraining on larger datasets is also time and power ex-
pensive, making these models less useful for rapid creative
experimentation. These tools mostly focus on monophonic
sounds with harmonic spectra which limits their usefulness
as a DSP tool. This paper positions a case specific creative
tool –– the Autocoder –– as an applied solution.

The Autocoder [1] is a Tensorflow based implementation
of a variational autoencoder that is optimized for singular
musical input rather than large corpora of sounds, and at-
tempts to model the spectral details of the input in order to
synthesize a novel output based on the input sound.

It is available as a Max/MSP external, as a python frame-
work, and as hardware in the form of a Eurorack module.
It is designed to have high usability for non–expert users
and allow even the most novice musician to experiment
creatively with the underlying methods without a deep un-
derstanding of the topic.

1.1 Plain Autoencoders

An autoencoder [2] is a neural network that takes an input,
runs it through one or more hidden layers and reproduces
the input as accurately as it can. It can be described as a
same-in-same-out structure where a compressed represen-
tation of the training data is learnt by the model.

Copyright: ©2022 David Brynjar Franzson et al. This is an open-access
article distributed under the terms of the Creative Commons Attribution
License 3.0 Unported, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are
credited.

Figure 1. Plain autoencoder layout.

The network consists of two separate parts: an encoder
that takes the training data and produces a latent vector en-
coding the training data in a lower number of dimensions;
and a decoder that reconstructs the original input based on
the latent vector (see Figure 1). The two parts are trained
at the same time, using the reconstruction error, i.e. the
difference between the input and the output, to adjust the
weights of the hidden layers and in the process changing
how the input maps onto the latent vector.

1.2 Variational Autoencoders

The representation learned by an unregularized autoen-
coder is not necessarily meaningful. If the model has no
incentive to place similar data points near each other in
the latent space, it may still achieve a low reconstruction
error with a more-or-less arbitrary and contorted mapping
into the latent space, making it ‘lumpy’. As a result, minor
changes in the latent space can produce wild variations
in the output of the decoder, rendering it hard to control
as a generative tool – there is no meaningful notion of a
‘random point’ in latent space, and a small perturbation
can move off the data manifold entirely. The only reliable
way to get a meaningful point in the latent space of a plain
autoencoder is to run data through the encoder.

Variational autoencoders (VAE) [3] solve this problem by
constraining the distribution of data points once embed-
ded in the latent space. While the distribution in the latent
space may be arbitrarily ‘lumpy’ when using an unregu-
larized autoencoder, the VAE can require it to be in some
sense ‘smooth‘; for example, to be Gaussian. The VAE
achieves this by adding noise in the latent space during
training, which encourages like points in the latent space
to map to like outputs in the data space, while points in the
latent space spread apart to become less confusable.

A complementary view is that the VAE approximates a

mailto:david.brynjar@gmail.com
mailto:victor@lhi.is
mailto:thor.magnusson@lhi.is
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Bayesian probabilistic model of the data. With a VAE, we
can sample points in the latent space from our chosen prior
distribution. By passing those latent points through the de-
coder, they become samples from the (modeled) data dis-
tribution. As long as a vector in latent space is not too
unlikely under the prior (i.e., has a magnitude less than
three or so when using a standard normal prior), it should
decode to something ‘data-like’, regardless of whether that
specific latent representation is present in the training data.

1.3 Prior Work

The use of autoencoders for generative spectral synthesis
was proposed by Sarroff et al. in 2014 [4]. They trained an
autoencoder on a large corpus of magnitude Fourier frames
and used the encoder to encode an incoming signal and
manipulate the resulting latent vector before running the
altered latent vector through the decoder, synthesizing an
output based on the altered vector.

The basic autoencoder approach was further extended
with MFCC transforms and made fully generative by
Colonel et al. [5], training an autoencoder on a large
corpus of samples taken from a MicroKorg synthesizer.

In their 2018 paper, Esling et al. [6] made a fully
generative network, using a variational autoencoder with a
mel scale transform of the input data, using Ircam’s SOL
database of monophonic instrumental sounds as training
data. By manipulating any of the 64 values in the latent
layer, hybrid instruments and perceptual descriptors were
synthesized.

The Acids group at Ircam has developed this work
further with their impressive RAVE model which allows
for real-time unconditional generation and remapping of
sounds between domains, with the output being generated
directly from the model without the need for spectral
resynthesis.[7]

The differentiable digital signal processing (DDSP) [8]
project has made complementary progress on sound mod-
eling by using an intermediate representation in the de-
coder between latent space and data space. With DDSP,
a primary decoder outputs interpretable parameters for one
of several differentiable synthesizers, which then complete
the decoding to audio.

This prior work has in large part relied on larger scale
corpora of monophonic sounds with harmonic spectra in
order to produce a generalized model rather than modeling
individual sounds. As a result, these models behave more
like traditional instruments rather than an exploratory cre-
ative space and take days to weeks to train. In addition,
much of the more recent work, such as Ircam’s RAVE, fo-
cuses on the production of sequential waveform generation
rather than the spectral domain.

2. MOTIVATION

Our motivation for the Autocoder is the artistic need for
a simple tool aimed at creative individuals that allows for
the manipulation and exploration of any input sound ––
harmonic or in-harmonic, monophonic or polyphonic –– in
real-time, with minimal time wasted on training and adjust-
ment of network parameters while emphasizing the quality
of the synthesized output. We found that existing technical
solutions did not support the artistic outcome desired, and

believe that the technical solution presented here will add
knowledge and technical tools to the research domain of
AI musical creativity.

3. IMPLEMENTATION

The Autocoder implements a VAE using the Tensorflow
machine learning framework. The Autocoder uses a short
input––such as a song or a song fragment––to optimize the
latent dimension of the VAE based on similarities that are
present in the specific input rather than optimize for all
eventualities in a larger corpus. As the goal of the Au-
tocoder is to generate materials that could exist within the
space defined by the training data, the model can use the
full input sound as both training and test input, which pro-
duces a more nuanced case specific output with shorter
training times than when splitting the data into seperate
training and testing input.

Random walks within the resulting latent space produce
seemingly meaningful musical output based on features
present in the input. This allows the artist to creatively
explore and extend previously constructed materials rather
than having to positivistically construct the musical expe-
rience from explicit parameters.

3.1 Training–data Preparation

A moment–by–moment spectral representation is extracted
from an input sound by running it through a short-term
Fourier transform. Any sequential or temporal structure
that is not encoded within an FFT frame is lost. Any pitch
connections that are present within a frame, either through
harmony or when the frame overlaps over two consecutive
sounds, are captured by the model. Through trial and error,
we chose a frame size of 16384 in order to capture some of
this local structure in the training data.

Raw FFT data has the issue that half of the data repre-
sents the top octave of the sound (which at a sample rate
of 44.1kHz would be the frequencies between 11.025 kHz
and 22.05 kHz), and half of the rest of the data the oc-
tave below that. Without specifying which frequencies are
important to our hearing, the neural network would spend
most of its capacity on modeling high-frequency details
which are imperceptible to humans, neglecting more im-
portant spectral content. To address this, the amplitude
of the spectrum is converted with a mel scale transform,
a linear transform of the log distribution of energy in the
spectrum. In the mel transform, each octave is represented
by roughly the same number of values, making the recon-
struction error more perceptually relevant.

Converting the data to mel also allows for a large
compression of the input spectrum, in our case from
8192 points for an FFT window size of 16384 down to
512 points. The data is normalized by scaling the global
minimum and maximum of the data between 0 and 1, and
then fed into the encoder network.

The spectral amplitudes are absolute values, while the
phase can be rotated and cuts off as it crosses either pi or
-pi, making both raw phase and phase–difference hard to
train on without some clever cooking of the raw data, so the
phase of the input is ignored. This means that the synthe-
sized output loses most transient information beyond that
which is present in the larger scale dynamics of the input.



Future work will explore phase reconstruction techniques
as a potential solution to this limitation.

3.2 Network Architecture

The objective of the network is to learn the spectral rep-
resentation of the input data as accurately as possible in
order to synthesize an output that is representative of the
spectra and dynamics of the input data. The Autocoder ar-
chitecture is somewhat arbitrary and designed through trial
and error. It is a ‘shallow’ single hidden layer model that
learns general features efficiently and fast. We found that
using deeper architectures with our small-data tasks only
resulted in a more ’lumpy’ latent space (see 1.2).

Figure 2. Shallow network architecture.

The hidden layer of the encoder explodes the input data of
512 points into 1000 dimensions, allowing for better fea-
ture separation, feeding into a latent space with 8 dimen-
sions. The decoder reverses this process (see Figure 2). By
feeding the training data through the encoder after train-
ing, min and max factors are extracted to scale the range of
values in the latent vector that correspond to the min and
max values in the encoded training data to the range from
0 to 1.

The model is trained using an Adam optimizer, with a
Kullback Leibler loss function. The stopping condition is
a given minimum change in the reconstruction error be-
tween epochs. Based on listening experiments the mini-
mum change was defined as .001 for fast training, .0001 for
medium amount of training, and .00001 for high amount of
training. The learning rate was also defined as .001 for fast
training, .0001 for medium amount of training, and .00001
for high amount of training. 1 As the learning rate and
stopping conditions are adjustable, the number of epochs
is variable. The resulting model size is roughly 6.4MB.

As the network architecture is relatively simple, training
times on Google Colab are roughly equal to the duration of
the input sound for a model using the fast training setting
with batch size set to 256, and around 3-5x the duration of
the input for a more detailed model. With batch size set
to 4096, the training time of a model trained with the fast
training setting drops to less than 25 percent of the original
duration on a few minutes long input.

1 Higher amount of training does not universally lead to better sound-
ing results.

4. APPLICATIONS

Max/MSP implementations for 4.1 and 4.2 are included
with the Autocoder[1]. A simple implementation of 4.3
can be found in the github repository.

4.1 Generative Synthesis

A continuous soundscape is produced by generating a ran-
dom walk for each value in the latent vector and then de-
coding the latent vector into a spectral frame. The resulting
spectrum is then synthesized by randomizing the phase and
taking the inverse FFT of the frame. If the step size of the
random walk produces undesirable discontinuities in the
output, spectral domain low pass filtering can be applied.

Three examples of the output of the generative synthesis
can be found at https://tinyurl.com/ya9jkz4d. In the first
example, the shallow model was trained on a three minute
song, in the second, the model was trained on three minutes
from Wagner’s Tristan and Isolde, and in the third, on 95
minutes from Books 1 and 2 of Monteverdi’s Madrigals. 2

4.2 Filtering

The network can also convert a discrete input space into a
continuous one. Spectral filters can be derived from a set
of reverb impulses which can then be fed as training data
to the model, producing a continuous latent space that can
be used to generate the filtering stage in a hybrid reverb.
This generates new unheard impulses in-between the orig-
inal impulses, and offers the ability to dynamically morph
between discrete reverb spaces.

Models used for generative synthesis can also be used for
convolution, resulting in a cross synthesis where the carrier
signal is generated by the model and dynamic within the
space defined by the training data. By whitening the mod-
ulator spectrum (by normalizing the frame to 0 to 1 and
then setting each value to a fractional power, thereby flat-
tening any peaks in the spectrum), the need for loud bins
to align for a signal to be produced can be mitigated and a
more forgiving imprint of the modulator on the carrier can
be produced.

Two examples of the hybrid reverb/convolution can be
found at https://tinyurl.com/2p97zmrw. The first uses a
model trained on 660 impulse responses for the filtering
stage of a hybrid reverb, while the second uses the gener-
ative output from the pop–song model from above as an
impulse response.

4.3 Autocoding

A more direct form of cross synthesis can be produced by
feeding a different input sound into a pre–trained encoder,
producing a latent representation of that new input sound
as ‘heard’ by the AI. This representation can then be de-
coded, effectively transferring timbre from the model onto
the input sound. Since the AI only knows how to hear
things based on its training data, a hybrid sound is pro-
duced. It is highly unlikely that the latent vector repre-
sentations even as much as overlap, and since the model
is trained to fit very tightly to the input data with minimal
generalization, the two sounds need to be trained together

2 The Autocoder can handle longer input as long as it is internally con-
sistent and structured.

https://tinyurl.com/ya9jkz4d
https://tinyurl.com/2p97zmrw


as a single model, and the latent representation of the mod-
ulator must be offset, clipped and scaled to match the latent
representation of the carrier. The mapping of the different
dimensions of the latent representation can be scrambled
and the dimensions themselves inverted, producing numer-
ous variants of the original input.

4.4 Hardware Implementation

Currently, we are developing a synthetic body for the hall-
dorophone [9] –– an electroacoustic feedback string in-
strument –– in the form of a Eurorack–module–based im-
plementation of the convolution algorithm. This genera-
tive virtual resonant body is produced from a number of
real-world and synthetic responses, creating new hybrid
responses where the resonant response of the instrument
shifts dynamically in time, affecting the feedback proper-
ties of the instrument.

The initial prototype runs in real–time on a Raspberry
Zero 2, making the hardware relatively inexpensive and its
power consumption minimal. The hardware can also be
used as a standalone generative synthesizer.

4.5 Other Applications

We can calculate the similarities between the spectral
representations of any two sounds that have been trained
together in a corpus, by calculating the Euclidean distance
between their latent representations. These similarity
judgements can be used for concatenative synthesis,
granular synthesis based on similarities between spectral
frames (such as in Bitton et al. [10]), as well as for larger
scale compositional judgements based on similarities
between sounds.

5. ETHICS

This research presents an interesting ethical question: what
does it mean when you borrow and manipulate the aura of a
sound or a passage of music and reconstruct it it separately
from its source? As none of the original source is present
in the output it becomes less of a legal issue although it
is still unclear how manipulating borrowed material in this
way should be treated under copyright law. We acknowl-
edge the new ethical and legal issues that machine learning
in the arts present to us and embrace any future collabo-
ration between artists, engineers, copyright lawyers, and
ethicists, discussing the core issues of how new intelligent
technologies affect artistic expression.

6. CONCLUSIONS

The Autocoder has shown itself to be a useful tool in re-
cent work by us and our collaborators. Real-world use
cases have so far included extending few second long in-
strumental sounds into multi minute drones that retain the
dynamicity and variability of the original instruments; as
convolution carrier generators –– in one instance allowing
us to run inference on twenty models concurrently to con-
struct large dynamic multi-point resonant spaces in real-
time; in another case as a tool to morph instrument, voice
and natural sound via cross synthesis in an installation set-
ting; and as dynamic filters in the paths of feedback instru-
ments, making them both self-generating musical objects,

as well as constantly changing performance instruments.
We are pleased with the results, the generated sound often
proving surprisingly rich and sophisticated, supporting our
belief that there is much potential in our approach.

Listener response to the generated materials makes us be-
lieve that source specific modeling represents an important
niche in musical machine learning that presents artists with
an important tool to expand their DSP toolkits.

We encourage people to download the software and ap-
ply the Autocoder in their own work. It is open source
under a very permissable license and available for anyone
to use and extend. Our future work will focus on the ex-
pressive potential and use cases of the Autocoder, further
developing the core algorithm and reflect upon its creative
use, particularly its potential to be a ghost in the machine
within otherwise traditional instruments.

7. REFERENCES

[1] D. B. Franzson, “Autocoder,” http://github.com/
franzson, 2021.

[2] M. A. Kramer, “Nonlinear Principal Component Anal-
ysis using Autoassociative Neural Networks,” AIChE
Journal, no. 2, pp. 233–243, Feb.

[3] D. P. Kingma and M. Welling, “An Introduction to
Variational Autoencoders,” Foundations and Trends®
in Machine Learning, no. 4, pp. 307–392.

[4] A. Sarroff and M. Casey, “Musical Audio Synthesis us-
ing Autoencoding Neural Nets,” Proceedings ICMC,
01 2014.

[5] J. Colonel, C. Curro, and S. Keene, “Autoencod-
ing Neural Networks as Musical Audio Synthesizers,”
ArXiv, vol. abs/2004.13172, 2020.

[6] P. Esling, A. Chemla-Romeu-Santos, and A. Bitton,
“Generative Timbre Spaces: Regularizing Variational
Auto-Encoders with Perceptual Metrics,” CoRR, 2018.

[7] A. Caillon and P. Esling, “RAVE: A variational
autoencoder for fast and high-quality neural audio
synthesis,” 2021. [Online]. Available: https://arxiv.org/
abs/2111.05011

[8] J. Engel, L. H. Hantrakul, C. Gu, and A. Roberts,
“DDSP: Differentiable Digital Signal Processing,” in
International Conference on Learning Representa-
tions, 2020.

[9] H. Úlfarsson, in Proceedings of the International Con-
ference on New Interfaces for Musical Expression,
Blacksburg, Virginia, USA.

[10] A. Bitton, P. Esling, and T. Harada, “Neural Granular
Sound Synthesis,” CoRR.

http://github.com/franzson
http://github.com/franzson
https://arxiv.org/abs/2111.05011
https://arxiv.org/abs/2111.05011

	 1. Introduction
	1.1 Plain Autoencoders
	1.2 Variational Autoencoders
	1.3 Prior Work

	 2. Motivation
	 3. Implementation
	3.1 Training–data Preparation
	3.2 Network Architecture

	 4. Applications
	4.1 Generative Synthesis
	4.2 Filtering
	4.3 Autocoding
	4.4 Hardware Implementation
	4.5 Other Applications

	 5. Ethics
	 6. Conclusions
	 7. References

