
Notochord: a Flexible Probabilistic Model for
Real-Time MIDI Performance

Victor Shepardson
Intelligent Instruments Lab

Iceland University of the Arts
Reykjavík, Iceland
victor@lhi.is

Jack Armitage
Intelligent Instruments Lab

Iceland University of the Arts
Reykjavík, Iceland
jack@lhi.is

Thor Magnusson
Intelligent Instruments Lab

Iceland University of the Arts
Reykjavík, Iceland

thor.magnusson@lhi.is

Abstract

Deep learning-based probabilistic models of musical data are producing increas-
ingly realistic results and promise to enter creative workflows of many kinds. Yet
they have been little-studied in a performance setting, where the results of user
actions typically ought to feel instantaneous. To enable such study, we designed No-
tochord, a deep probabilistic model for sequences of structured events, and trained
an instance of it on the Lakh MIDI dataset. Our probabilistic formulation allows
interpretable interventions at a sub-event level, which enables one model to act as
a backbone for diverse interactive musical functions including steerable generation,
harmonization, machine improvisation, and likelihood-based interfaces. Notochord
can generate polyphonic and multi-track MIDI, and respond to inputs with latency
below ten milliseconds. Training code, model checkpoints and interactive examples
are provided as open source software.

1 Introduction

What happens when a musical instrument reflects oneself, diffracts cultural forms, or reveals alien
aesthetics of computation [14] in an intimate dance with the user? How do we work with creative AI
when its behavior is unique to the situation at hand, and can only be drawn out via interaction with
the body? In the Intelligent Instruments Lab, we consider musical performance and improvisation an
excellent domain to study such questions. Our wider research program involves designing a system
of diverse technical elements, from software to hardware, sensors to effectors to processors, which
can be readily assembled into ‘intelligent instruments’ for probing the embodied experience of AI [6].
As part of this program, we designed a low-latency probabilistic sequence model for MIDI streams
while entertaining future transfer to non-MIDI sequences such as sensor data. Because it is a protean
and flexible backbone1 for embodied musical tasks, we have named this model Notochord.

Notochord is an open-ended tool for MIDI processing, designed to maximise the space of possible
interactions while making few assumptions about input device or the user’s creative interests. An
instrument designer using Notochord can program fine-grained interventions into the generative
process which a performer can interact with in real-time. For example, one can require that the
next MIDI event in a performance have a pitch-class of C, or that it will occur no sooner than 100
milliseconds, or that it will be played on the snare drum with a velocity of 99, while Notochord
selects its other attributes in context.

Notochord is intended for exploration of creative AI in a real-time performance setting. At a low
latency where the delay between action and response is imperceptible, an instrument may begin to feel
more like an extension of the body than an external content production device. Yet many creative AI
applications involve delays on the order of seconds or longer between action and result. With such a
coarse rate of feedback, it is difficult for them to enter the body schema [23] in the manner of a guitar
string or paintbrush. It is well known how musical applications can have particularly demanding

1https://en.wikipedia.org/wiki/Notochord
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latency requirements [27], and to ensure that Notochord does not disrupt embodied interaction with
instruments built on it, our design emphasizes low-latency processing of each input MIDI event.

In Sections 2 and 3, we describe the theory and implementation of the Notochord probabilistic model.
In Sections 4 and 5, we report on an instance of Notochord trained on the Lakh MIDI dataset to
sponge up 100,000 songs worth of ambient musicality. Examples of specific applications built on
Notochord are given in Section 6.

2 Background

The present work falls within what Ji et al. [22] call “composing expressive performance” and Oore et
al. [28] call “direct performance generation”: modeling music at a symbolic level, but with the inclu-
sion of performed timing and gesture. Specifically, we aim to model real-time musical performance
or improvisation captured via MIDI while also incorporating information from preprogrammed MIDI
files.

The typical approach to representing MIDI performance is to use a ‘text-like’ representation,2 which
flattens all musical structure into a linear sequence of categorical variables, exploding the sub-parts
of notes to discrete events from a unified vocabulary. This renders musical data similar to text data,
allowing methods from language processing to be transferred to music. PerformanceRNN [28] for
example uses separate ‘velocity change’, ‘time shift’, and ‘pitch’ (on or off) tokens to model single
MIDI events and the time between them. The MMM model [13] and the model of Simon et al
[34] both add program change events to handle multiple instruments, concatenating MIDI tracks
sequentially. The REMI representation used for Pop Music Transformer [21] adds tempo and chord
events, and uses time signature-aware ‘position’ and ‘bar’ events instead of time shift.

Text-like representations are extremely flexible, but since they take multiple sub-events to represent
each MIDI note, efforts have been made to improve computational complexity by grouping them
back together. The MuMIDI representation used for PopMAG [32] has a similar vocabulary to REMI,
but introduces a method of summing embeddings to reduce total sequence length. The NoteTuples
representation used for Transformer-NADE [19] also groups note features into single timesteps, each
note being a tuple of (coarse time, fine time, pitch, velocity, coarse duration, fine duration). In contrast
to PopMAG, they fully model the internal structure of each note using NADE [36].

The probability model implemented by Transformer-NADE [19] (itself inspired by [8]) is similar
to ours in that it is an autoregressive model for composite events. Differences include that we treat
note-offs separately; we use continuous time and velocity instead of coarse/fine; and we use an
RNN-based architecture for low latency prediction. The authors allude to, but do not elaborate on,
any-order note factorization and discretized mixture logistic distributions, ideas which we developed
independently for Notochord in Section 3. Notochord also bears similarities to infilling methods
like MMM [13] and MusIAC [16], though the focus there is on assisted composition rather than
low-latency performance.

Our applications are inspired by work including the DeepBach chorale generation system [17], which
explores fine-grained interventions into a probabilistic model; Piano Genie [12], which constructs an
“intelligent interface” for piano performance using an autoencoder with a bottleneck reducing the 88
piano keys to eight controller keys; and Mann’s [3] and Castro’s [9] efforts to wrangle pre-trained
Magenta models into an interactive environment.

3 Notochord

Notochord is a deep autoregressive model for sequences of events. Its main distinguishing features
are chosen to support low-latency interaction, including musical performance. First, it uses a causal
and order-agnostic event representation. Causal, in the sense that no future information is included
in an event: voices are interleaved rather than concatenated serially, and note-off events are used
rather than note durations. Order-agnostic, meaning that velocity and time-skip need not be predicted
before pitch: within an event, the sub-events can be predicted in any order, which supports a range of

2Note that we do not discuss literal text representations, like the ABC notation used in the folkrnn line of
work [18], as they represent scores but not performances.
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applications as described in Section 6. Second, the architecture is designed with low, fixed latency in
mind: we use a recurrent backbone rather than long convolutions or self-attention.

In section 3.1, we describe the data representation used for Notochord. In 3.2 we introduce Noto-
chord’s probability model at the coarsest level, in 3.3 and 3.4 with increasing granularity. Finally in
section 3.5 we describe the underlying neural network function approximators.

3.1 MIDI representation

Notochord uses a shallowly hierarchical event-based representation similar to Transformer-NADE
and PopMAG. In contrast to those works, we separate notes into on and off events rather than using
duration. This allows for low-latency applications where note duration may not be known at the time
of onset. Events have internal structure (pitch, time, velocity, instrument), which we model explicitly
to support a wide range of interpretable interventions.

In this work, we limit the task to modeling streams of MIDI Note On and Note Off3 events (plus
implicitly program change events). Other MIDI messages (Pitch Bend, Control Change, Aftertouch)
are ignored for simplicity, though we hope to include them in future work. We model the set
X = {x1 . . . xM} of MIDI sequences xi = {xi

1 . . . x
i
Ni

}, where each event xi
j = (∆tij , v

i
j , p

i
j , α

i
j) is

composed of several sub-events: a continuous inter-event time ∆t, continuous velocity v, categorical
pitch p, and categorical instrument identity α. Our note-off events are always encoded as events with
velocity zero, with any release velocities being ignored. (Release velocities are inconsistently present
in MIDI data since many controllers and synthesizers do not support them, and instead use Note On
with velocity 0 to represent Note Off, as we do).

In contrast to much previous work which represents time using quantized, tempo-relative units, we
represent time in seconds, as a continuous quantity. This lets our model handle tempo changes and
performances in free time or without requiring any predefined metric structure. As in live music
performed without a metronome, all metric structure is implicit in the sequence of events which make
up a performance.

In our system, each event includes an instrument ID, in contrast to MIDI where each event has a
channel from 1-16, and a separate Program Change event sets the instrument of a channel. This
extends MIDI in the sense that we are not limited to 16 instruments at once; it has the limitation that
we cannot represent multiple instances of the same instrument. For example, in our representation all
128 General MIDI instruments can sound simultaneously. However, it is not possible to have two
“tenor saxophone” instruments playing the same pitch at once (though see Appendix C for more on
our instrument representation).

3.2 Autoregressive factorization

Like many other deep generative models, Notochord is probabilistic. Given a stream of events,
it assigns a numerical probability to that stream, and this is how it is trained: to maximize the
probability assigned to actual streams in a dataset. In application, it can stochastically sample new
streams according to the probabilities it has learned. Furthermore, Notochord is designed to be used
interactively: when we sample each event, we need to do it quickly, and we can assume that all past
events are known but no future events are known.

An autoregressive model uses exactly this strategy to model complicated objects (like long streams of
events) in terms of simpler objects (single numbers). More formally, we factor a joint distribution of
high-dimensional data points P (x) into a product of simpler conditional distributions

∏
i P (xj |x<j).

Such a model can be fit by maximizing the conditional probability of data with respect to model
parameters θ, resulting in the objective: maxθ

∑
i,j logP (xi

j |xi
<j).

3.3 Sub-event order

Recall from Section 3.1 that each of our events xi
j is a tuple of multiple sub-events (instrument, pitch,

time and velocity). These musical quantities are not statistically independent, even given all previous
notes; the next pitch will depend on which instrument plays it, velocity will depend on whether the

3For clarity, we capitalize events from the MIDI spec (“Note On”) but hyphenate when referring to events in
the Notochord representation (“note-off”)
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timing indicates a strong beat, and so on. In fact, we envision those dependencies as affordances for
making meaningful interventions in the generation process. For example, suppose a user wants to
constrain the next event to have a specific pitch of G#3. In this case, they would query the model as
follows: “given that the next event has a pitch of G#3, which instrument will play it and when?”

Sub-event structure can also be modeled autoregressively: we might first sample the instrument,
which would then condition the sampled pitch, then time, then velocity. That is, we would factor
P (xj |x<j) = P (αj |x<j)P (pj |αj , x<j)P (∆tj |pj , αj , x<j)P (vj |∆tj , pj , αj , x<j)

What if we want to intervene within an event? Suppose we want to insist that the next event be from
the grand piano (i.e. General MIDI instrument 1). In that case, we simply fix αj = 1 instead of
sampling from P (αj |x<j). But consider a different application: we want to enforce that the next
event has velocity zero (i.e. is a note-off) but we want the model to decide which note to end and
when. If we simply fix vj = 0 instead of sampling P (vj |∆tj , pj , αj , x<j), our intervention will have
no causal effect on the rest of the event, since the other parts were sampled first. The model might
choose a note which is not even currently playing. The same logic applies to further applications: if
we want the next note to be in a high register, we should fix it before sampling the instrument – what
if the model, naïve to our requirement, samples the bass?

To enable a user to query in any desired order at inference time, our solution is to optimize over all
permutations of sub-event parts. During training, each sub-event prediction is conditioned upon a
random subset of the other sub-events.

3.4 Sub-event distributions

With our events now broken into scalar sub-events (instrument, pitch, time, velocity), we can model
each with a parametric probability distribution. Instrument and pitch are categorical variables, so we
represent their conditional distributions in the typical way, with a vector of probabilities produced
from the softmax function.

Time and velocity, however, are continuous in our model (Section 3.1). Since MIDI files can contain
a variety of tick durations and ticks per beat, we dequantize time and convert to absolute times in
seconds. While MIDI velocities take only 128 values, we choose to also dequantize velocity and
treat it similarly to time with an eye toward future transfer learning to non-MIDI domains with finer
dynamics (raw data from a piezoelectric sensor for example). A discretized mixture of logistics [33]
is used to model the values of velocity and time. We elaborate on this choice in Appendix A.

3.5 Neural network architecture

Thus far, we have described Notochord in the abstract as a probability model factored into conditional
distributions. In this section, we describe the function approximators used to learn those conditional
distributions from data.

To embed sub-events into vector space at the inputs to networks, we use a standard look-up table
embedding for categorical variables. For continuous variables, we use a sinusoidal embedding,
elaborated on in Appendix B

We implement the causal dependency between events using a gated recurrent unit (GRU) network [10].
This allows for low latency processing of single events at inference time compared to memory-less
architectures for which computational cost scales with receptive field. Embeddings for sub-events are
summed to produce a single input embedding per event, which is passed into the GRU to produce a
hidden state hi which depends on all previous events x<i.

Dependency between concurrent sub-events is achieved by summing the embeddings for conditioning
sub-events into the hidden state. Recall that we optimize over all permutations of sub-event orders
(Section 3.3); to do so, we randomly select a subset of other sub-events to condition each target
sub-event. The conditioned hidden state is passed through a multilayer perceptron (MLP) for each
sub-event modality to produce distribution parameters for the sub-event, i.e. logits in the case
of categorical modalities (instrument, pitch), and mixture weights, locations and scales for the
continuous modalities (time, velocity). For example, to compute probability of the pitch of the ith
event given the ith velocity and time-difference, as well as all previous events, we have:

P (pi|x<i, vi,∆ti) = softmax(fp(fh(hi) + vi +∆ti))

4



 α1 = 🎷 
 p1 = E3
Δt1 = 50ms
 v1 = 99

 α0 = <start> 
 p0 = <start>
Δt0 =  0
 v0 =  0

h1 h2 hntime h0

sub-event 
distributions

hidden 
states

detail of fα, fp, 
ft, fv, and fh

sub-event 
embeddings

GRU GRU

fh

fα

P(α1)  P(p1)  P(Δt1)  P(v1)

fp ft fv

Dropout

Layer Norm

Linear

Linear

GLU

Figure 1: Architecture of the Notochord model at training time. Rectangular blocks are functions,
long capsules are embedding vectors, and short capsules are hidden states. Each sub-event depends
on previous events via a GRU, and also on a random subset of the other sub-events. Conditioning of
each sub-event on other sub-events is achieved by simply adding their embeddings to the hidden state
after passing it through an MLP fh. The addition can be implemented in parallel as a batched matrix
multiplication at training time. This is depicted with black cells indicating a one, gray cells a random
binary value as proposed in Section 3.3, and white cells a zero. A final MLP per sub-event maps the
summed embeddings and hidden states to distribution parameters. MLP architecture is shown as an
inset, top right.

Where hi is the ith GRU hidden state, fp and fh are the MLPs for pitch and hidden state, and vi and
∆ti are here the embeddings for velocity and time-difference.

All MLPs fα, fp, f∆t, fv , and fh have the same architecture using dropout [20], layer normalization
[7], and gated linear unit (GLU) activations [11]. We also fit a linear end-of-sequence predictor
conditioned on the hidden state. The Notochord architecture is depicted in Figure 1.

4 Training

Notochord is implemented in PyTorch [29] using standard layers, plus our own implementation of
the discretized mixture of logistics (Appendix A), with reference to that of [33].

Notochord is fit to the Lakh MIDI dataset (LMD) [2][30]. LMD is not specifically a performance
dataset, containing mostly programmed songs. We nevertheless chose to develop Notochord using
the LMD as it is large, noisy, and diverse, to emphasize robustness and flexibility in the design.
We leave integration of more narrow but performance-oriented datasets like Groove MIDI [15] and
GiantMIDI-Piano [24] to future work. Details of data processing and augmentation are given in
Appendix C, and optimization in Appendix D.

5 Results

In Figure 2, we investigate the efficacy of any-order event factorization (Section 3.3). We can see that
the negative log-likelihood consistently decreases as more information is available. This indicates
that the model is successfully conditioning on all available information, and we can expect sub-event
interventions to be meaningful. The effect of sampling order on total likelihood is small, but sampling
instrument earlier seems to be advantageous.

Cursory timing on a MacBook Pro with Intel Core i7 7700HQ processor gives about 6ms to feed an
event to the model and about 3ms to sample the next full event. In future work, we hope to improve
on this using pruning and quantization.

Notochord does not compete with the state of the art when used for coherent music generation,
because it aims for low-latency interactivity and enforces few assumptions about musical structure.
For this work, we focused on bridging the gap to very low latency and the diversity of applications it

5



S SP ST SV SPT SPV STV SPTV

0.4

0.6

0.8

1.0

NL
L 

(b
its

 p
er

 su
b-

ev
en

t)

instrument (I)

S SI ST SV SIT SIV STV SITV
1.4

1.6

1.8

2.0

2.2

2.4

pitch (P)

S SI SP SV SIP SIV SPV SIPV
conditioning

1.00

1.05

1.10

1.15

1.20

NL
L 

(b
its

 p
er

 su
b-

ev
en

t)
time (T)

S SI SP ST SIP SIT SPT SIPT
conditioning

1.6

1.8

2.0

2.2

velocity (V)

IPT
V

IPV
T

ITP
V

ITV
P

IVP
T

IVT
P

PIT
V

PIV
T

PT
IV

PT
VI

PV
IT

PV
TI

TIP
V

TIV
P

TP
IV

TP
VI

TV
IP

TV
PI

VIP
T

VIT
P

VP
IT

VP
TI

VT
IP

VT
PI

sampling order

5.35

5.40

5.45

5.50

5.55

NL
L 

(b
its

 p
er

 e
ve

nt
)

validation loss by order of sub-events

Figure 2: Bootstrap 99% confidence intervals for negative log likelihoods (NLL) computed over the
validation set (lower is better). On the left, NLL is broken out by sub-event modality (instrument,
pitch, time, velocity) and by which other sub-events each is conditioned on. In the leftmost position
of each subplot, the sub-event is conditioned only on previous events via hidden state (S) and then
from left to right on larger combinations of other sub-events. On the right, total NLL per event is
reported for every permutation of sub-event order.
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Figure 3: A sequence of conditional distributions (Section 3.4) from sampling the model. Sub-events
are ordered from top to bottom, then events left to right; red lines indicate sampled values. In this
example, the discrete distribution over instrument (orange, top left) is sampled first, then pitch (pink),
then the mixture density over time (green), and velocity (blue). Sampling continues in the right
column, beginning again with instrument for the second event. Note how the initially higher entropy
of the instrument distribution (top left) collapses to a very high probability of sampling the same
instrument again (top right); and how the velocity value sampled first (bottom left) becomes a more
likely value for the second sample (bottom right)

can enable, leaving a thorough comparison of neural network architectures to future work. Figure 3
illustrates a series of sub-event distributions as the model is sampled.

6 Applications

In this section, we illustrate the potential of Notochord with several preliminary applications. These
are implemented to varying degrees of completion in our open-source repository.4 A Notochord-based
application typically consists of three parts:

4https://github.com/Intelligent-Instruments-Lab/iil-python-tools/tree/master/examples/notochord
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Figure 4: Piano-roll visualization of event streams generated by sampling Notochord. We encourage
diversity by sampling the instrument of the first event uniformly from the General MIDI instruments
instead of using the model prior, which like the LMD is heavily biased toward instrument 1 (see
Figure 3).

• The Notochord server running in Python, with methods to feed each MIDI event to
Notochord as it happens and to query for predicted future events over Open Sound Control
(OSC).

• A front-end scheduler defining the application, which handles MIDI inputs and communi-
cates with Notochord. It determines what to feed, how to query and what to do with the
responses. Our example front-ends are built with SuperCollider [5].

• A synthesizer which converts the MIDI streams to sound. This might be hardware, a DAW,
or a General MIDI implementation such as fluidsynth [1].

6.1 Steerable generation

We can get a first listen to how Notochord behaves by sampling streams from events one at a time
and sending them to a MIDI synthesizer. Streams sampled from Notochord are rarely convincing
imitations of the data, but they have a certain “vaporwave fantasia” charm, as one observer put it;
Notochord can be a prism for diffracting General-MIDI culture into weird retrofuturistic skeins.

Generation can be ‘steered’ by manipulating the predictive distribution before sampling each sub-
event. For example, timing can be truncated to control event density; or pitch can be limited to certain
register; or a specific set of instruments can be selected. We can stop when the model predicts a
sequence end, or keep sampling and see where else it goes. Figure 6.1 illustrates an event stream
sampled from Notochord.

6.2 Auto-pitch and neural harmonizer

Because Notochord can handle the sub-parts of MIDI events in any order (Section 3.3), it can be used
to ‘fill in the blanks’. To build an ‘auto-pitch’ instrument, we take timing, velocity and instrument
identity from a MIDI controller or other source and query only pitches from Notochord. A player can
drum on a single pad controller, for example, and Notochord will generate a melody fit to the rhythm
and intensity of the performance in real-time.

In a slightly different scenario, we can take complete incoming MIDI events and use them to query
additional events from Notochord. If we answer every note-on event from the player with a sample
constrained to have ∆t = 0, v > 0, we have an ‘intelligent’ harmonizer which is sensitive to the
entire performance so far. Figure 6.2 illustrates the interaction between performer, scheduler and
Notochord to achieve this.

6.3 Live coding with TidalCycles

TidalCycles (Tidal for short) is a popular language for live coding of pattern created by Alex McLean
[26]. We created an OSC target allowing Tidal to communicate with Notochord via SuperCollider. In
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Figure 5: Implementation of the neural harmonizer. Input events from a MIDI controller are in the
bottom row. At the top is a sequence of model states annotated with queries for each harmonizing
pitch. The combined stream of events from the player, Notochord, and the scheduler appear in the
middle. In this example, the player strikes two notes before releasing each of them. The scheduler
tracks which harmonizing pitches are associated with which performed pitches in order to generate
matching note-offs.

this case, the user specifies all timing and note-offs implicitly via pattern structure in Tidal. Instrument,
pitch and velocity for note-ons can be completed by Notochord in a fine-grained manner (Listing 1).

1 p "choosepitch"
2 $ ncinst " 8 [ 13*3 [17 27]]"
3 # ncpitch " -1 [[60 -1 60] -1 ]"
4 # ncvel (range 120 70 $ sine)

Listing 1: An example Tidal pattern where Notochord ‘chooses’ the pitch when it receives a -1. The
instrument parameter is patterned as clavinet, marimba, organ, jazz guitar (according to General
MIDI). The velocity pattern follows a sinusoid between values of 70-120.

6.4 Machine improvisation

To improvise with Notochord as a partner we reserve certain instruments for any non-Notochord
players and zero the probability of choosing those instruments when querying Notochord. Every
event, player- or model- generated, causes a query for a new Notochord-generated event, which gets
scheduled to occur after its ∆t. If another player-generated event occurs first, the scheduled event is
canceled and a new prediction is queried for. In other words, if Notochord ‘plans‘ to play something
but a player goes first, it will ‘listen‘ and reconsider.

Being fit largely to MIDI arrangements of songs, the pre-trained Notochord is not the most considerate
improvising partner! However, we can imagine building more interesting bespoke improvisers on
top of Notochord’s implicit musical ‘knowledge’ and notion of ‘surprise’, or fine-tuning on bespoke
MIDI datasets.

6.5 Likelihood-based interfaces

Each of the previous examples involves random sampling from the Notochord model. Instead, we
can use the probability scores it returns to design new musical interfaces. For example, a player
might choose pitches ordered by their likelihood according to the model rather than by fundamental
frequency as on a traditional keyboard. Pictured in Figure 6.5 is an interface built on the Linnstrument
[4] to choose pitches by likelihood.

Rather than querying Notochord for predictions at all, we could measure the likelihood (degree of
‘surprise’) that Notochord ascribes to events and use it for something else, like modulating a synth
parameter.

7 Conclusion

This paper described Notochord, a new model for MIDI sequences which builds on previous deep
learning-based methods, but with new affordances. Namely, it can respond (perceptibly) instanta-
neously in a real-time setting while also enabling fine-grained interpretable interventions, qualities

8



Figure 6: Linnstrument interface for likelihood-based auto-pitch. Timing and velocity come directly
from the player via the Linnstrument pads; Notochord creates a dynamic mapping from the pad
coordinate to pitch. Here the main grid allow selection of pitches by relative likelihood from the
single most likely pitch (cyan) to the least (magenta). The single white pad samples pitch at random
from the model distribution (Section 6.2) and the yellow pad resets the model to its initial state.

which facilitate research into the embodied experience of machine intelligence in musical instruments.
We concluded by sketching some early applications to highlight Notochord’s flexibility. Code and
model checkpoints for Notochord are provided as open-source software in the hope that others will
experiment with it.
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A Time and velocity distributions

We use a discretized mixture of logistics [33] to model velocity and time sub-events, which allows us
to compare the probabilities of continuous quantities (being within some interval) to those of discrete
quantities. Thus our generative model treats velocity and time as continuous quantities which have
been quantized, which is the case when dealing with MIDI files which are captured performances.
But it can also handle intrinsically discrete data, like MIDI sequenced on a piano-roll. We use a
resolution of r = 1 for velocity (which remains valued from 0-127), and of r = 10ms for time, to
limit the sensitivity of the model to tiny differences which are an artifact of quantization in MIDI
data. At training time, we model the probability that data is within ± r

2 as a difference of values on
the cumulative distribution function (CDF). At inference time, the learned CDF defines a probability
density from which we sample continuous values. For further details, consult Salimans et al. [33].

The use of a mixture distribution for time is inspired by the discrete character of rhythmic intervals –
there is typically a finite set of rhythmic intervals which make sense musically (quarter note, triplet),
but within each there is room for variation in the fine timing (groove). Selecting a mixture component
can be viewed as ‘sampling the rhythm‘, and then sampling from it ‘samples the timing’. It is common
to modify parametric distributions before sampling as a way of tweaking the results; ‘temperature’
sampling adjusts the balance of high- and low-probability outcomes. We can separately modulate
‘rhythm temperature’ and ‘timing temperature’ by altering the mixture weights and component scales,
respectively.

B Sinusoidal embedding

To embed continuous scalar inputs to our model, we use a vector of sinusoids followed by a linear
projection, inspired by the Fourier features of Tancik et al. [35]. Sinusoids are logarithmically spaced
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by wavelength for time, and linearly for velocity. For example, a scalar velocity v is first mapped to a
vector vs = sin(2πf1v), sin(2πf2v), . . . sin(2πfNv) and then to the shared embedding space with
ve = Wvvs + bv, where the weight matrix Wv and bias vector bv are learnable parameters but the
frequencies f are fixed. For further details, see our open source implementation. 5

C Data processing and augmentation

Instruments are extracted from each MIDI file using pretty_midi [31], which we rely on to convert
tempo-relative timing to seconds and interpret MIDI Note Off events. We further trim any notes
sharing the same instrument and pitch (‘the same key of the piano’) to not overlap and leave at least
1ms between note-off and note-on, so they won’t be transposed when we add a small temporal jitter
later.

At training time, we use data augmentation to forestall overfitting and mitigate biases in the data
toward default keys, velocities and tempi. We apply random global tempo change of ±10%, a random
transposition of ±5 semitones, and a random velocity curve with an exponent log-normally distributed
with µ = 1, σ = 1

3 . We also apply a temporal jitter of ±1 millisecond independently to each event,
which has the effect of randomizing the order in which concurrent events appear to the model, while
remaining imperceptible. We dequantize velocity as discussed in Section 3.4, but without disturbing
the extreme values of 0 and 127, since hard zeros have the special meaning of note-off.

Finally, all instruments are recombined into one temporally-ordered stream with each event carrying
the instrument number. Melodic instruments use the General MIDI standard 1-128, while drums are
mapped to numbers 129-256. General MIDI uses a specific MIDI channel to identify drums, which
share program and pitch numbers with the melodic instruments; since we do not use channels, drums
are mapped to a distinct range of instrument IDs.

We also randomly map instruments to eight additional ‘anonymous’ melodic and drum identities
with a probability of 10% per instrument. This requires the model to infer instrument identities for
making good predictions in these cases. At inference time, anonymous instruments can then be used
in applications where bias toward a particular General MIDI instrument is undesirable.

D Optimization details

We train Notochord on LMD with minibatches of size 32, with a batch length starting at 32 events and
increasing by 1 each time through the dataset. Batch size is increased to 64 at after ten billion events,
then to 128 after another five billion. The AdamW optimizer [25] is used with hyperparameters of
(γ = 1× 10−4, β1 = 0.9, β2 = 0.999, ϵ = 1× 10−8, λ = 0.01).

We use dropout with p = 0.1 in our MLPs. Gradient L2 norm is clipped to a maximum of 1. Masks
for the sub-event dependencies are sampled independently for every batch item and time step. Lacking
the resources for exhaustive hyperparameter sweeps, we relied on preliminary experiments, hunches
and best practices.

We train for up to twenty billion total events, which takes about 80 hours on a single A4000 GPU, and
reaches a batch length of about 500 events. A validation set of 5% of the data was used to monitor
for overfitting, but we observed none (validation loss maintained a downward trend).

5https://github.com/Intelligent-Instruments-Lab/iil-python-tools/tree/master/notochord
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