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ABSTRACT

Multimodal displays that combine interaction, sonification, visu-
alisation and perhaps other modalities, are seeing increased in-
terest from researchers seeking to take advantage of cross-modal
perception, by increasing display bandwidth and expanding affor-
dances. To support researchers and designers, many new tools are
being proposed that aim to consolidate these broad feature sets
into Python libraries, due to Python’s extensive ecosystem that in
particular encompasses the domain of artificial intelligence (AI).
Artificial life (ALife) is a domain of AI that is seeing renewed
interest, and in this work we share initial experiments exploring
its potential in interactive sonification, through the combination of
two new Python libraries, Tölvera and SignalFlow. Tölvera is a li-
brary for composing self-organising systems, with integrated open
sound control, interactive machine learning, and computer vision,
and SignalFlow is a sound synthesis framework that enables real-
time interaction with an audio signal processing graph via standard
Python syntax and data types. We demonstrate how these two tools
integrate, and the first author reports on usage in creative coding
and artistic performance. So far we have found it useful to con-
sider ALife as affording synthetic behaviour as a display modality,
making use of human perception of complex, collective and emer-
gent dynamics. In addition, we think ALife also implies a broader
perspective on interaction in multimodal display, blurring the lines
between data, agent and observer. Based on our experiences, we
offer possible future research directions for tool designers and re-
searchers.

1. INTRODUCTION

In their recent state-of-the-art report on the integration of sonifica-
tion and visualisation, Enge et al. conclude that:

When it comes to the possibilities to design audio-
visual display idioms, most researchers, as well as
most domain experts, will not be able to successfully
develop their own designs. Interdisciplinary knowl-
edge bridging visualization, sonification, interactive
design, and human perception is necessary to design
effective, engaging, and re-usable audiovisual dis-
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play idioms. Therefore, we cannot expect a domain
expert to be able to quickly draft a prototype. [1]

While diverse knowledge is required to realise a professional
audiovisual display, there are now more tools than ever attempt-
ing to make bringing them together easy, simple and customis-
able. Many of the sonification tools presented in their review are
web-based GUIs that are indeed not meaningfully programmable
or extensible. However, more recently, convergence has centred
around the Python ecosystem, where a significant proportion of
data science and research is currently taking place. In particular,
multiple efforts have been made to bring the power of a dedicated
audio digital signal processing (DSP) language to Python, includ-
ing ways to embed SuperCollider in Python [2, 3], and a com-
plete port of the SuperCollider class system [4]. However, while
Python has many well-established frameworks for visualisation,
most were not designed for the high-bandwidth interactivity that
is now being demanded of them. Recent JavaScript-based visual-
isation frameworks such as Mosaic [5] increasingly do have these
features, but Python programmers are being left behind. This is
especially relevant in the case of integration between sonification
and visualisation, where real-time performance becomes critical.

In this paper, we demonstrate the integration of two libraries,
SignalFlow1 [6] and Tölvera2 [7], that aim to contribute to this ex-
citing area of research. As the authors of these two libraries, we
realised during the Timbre Tools Hackathon3 in February 2024,
that new affordances for interactive sonification might be possible
by combining them. Although Tölvera was not designed as a vi-
sualisation library per se, and lacks scientific plotting features, its
design for high-bandwidth real-time interaction, integration with
common creative computing tools, and focus on composing to-
gether simulated behaviours, made it interesting to repurpose for
sonification. Working with a hackathon team, we managed to
demonstrate initial concepts that were then elaborated on over the
following months4, reaching a stage where the libraries could be
used together in live performance.

1http://signalflow.dev
2http://tolvera.is
3https://comma.eecs.qmul.ac.k/

timbre-tools-hackathon
4Creative coding examples can be found at: https://github.

com/Intelligent-Instruments-Lab/iil-examples/
tree/main/tolvera/signalflow

http://signalflow.dev
http://tolvera.is
https://comma.eecs.qmul.ac.k/timbre-tools-hackathon
https://comma.eecs.qmul.ac.k/timbre-tools-hackathon
https://github.com/Intelligent-Instruments-Lab/iil-examples/tree/main/tolvera/signalflow
https://github.com/Intelligent-Instruments-Lab/iil-examples/tree/main/tolvera/signalflow
https://github.com/Intelligent-Instruments-Lab/iil-examples/tree/main/tolvera/signalflow
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(a) iSonic (2005) [8] (b) sonifyer (2008) [9]

(c) Rotator (2017) [10] (d) Sonification Workstation (2019) [11]

(e) Sonifigrapher (2019) [12] (f) sc3nb (2021) [2]

(g) WebAudioXML (2021) [13] (h) SoniScope (2022) [14]

Figure 1: Chronologically ordered screenshots of various sonification and visualisation tools reviewed in Section 2.1.
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2. BACKGROUND

Multimodal displays that combine interaction, sonification, visual-
isation and perhaps other modalities, are seeing increased interest
from researchers. Enge et al. [1] discuss that both visualisation
and sonification, forms of data perceptualisation, offer various ad-
vantages and challenges. Visualisation provides a non-linear per-
ception of data, easily revealing patterns, correlations, and trends.
In contrast, sonification makes use of our excellent auditory sys-
tem’s capacity to understand temporal changes and patterns [1].
Combining these capabilities in a dynamic multi-display system
would enrich the exploratory process and understanding of data.

2.1. Integrating Sonification & Visualisation

Various projects in the field of data display have attempted to cre-
ate a workflow and integration between visualisation, sonification,
and interaction (see also Figure 1). An extensive recent review can
be found in [15]. Some of these projects relevant to the contextual
placement of our system are:

iSonic [8] is an interactive sonification tool programmed in
Java. It focuses on vision-impaired users to allow the exploration
of geo-referenced numerical data. iSonic organises the data in two
modes: a table mode organised by regions (rows) and attributes
(columns), or a map mode showing the geographical distribution
of statistical attributes. Users can interact with the data using a
keyboard or touchpad and listen to the data mapped to pitch to
reflect variations in the values, using changing timbres to represent
spatial variation in the data.

Sonifyer [9] is an interactive sonification tool programmed for
macOS that allows users to explore data features through audifica-
tion or frequency modulation synthesis for parameter-based soni-
fication. The project aims to create user-friendly software for both
general and specialised users. The workflow includes importing
various data formats, organising data into visual and spatial views,
adjusting synthesis parameters, and using combined visual and au-
ditory feedback to analyse the data.

Sonification Workstation [11] is an open-source application
programmed in C++, QML, and JavaScript, using the Qt frame-
work. It is an interactive tool that combines sound and graphic data
representation by dividing the application into two windows: one
for data visualisation and the other a patcher for mapping and cre-
ating sonification schemes. The project aims to provide a platform
for data sonification, allowing people without sonification knowl-
edge, to create data-to-sound representations easily.

Rotator [10] is a web-based multisensory analysis interface,
programmed in JavaScript using React, D3.js for visualisation, and
Web Audio API for audio synthesis. The project features a rota-
tional display interface where users can interactively choose dif-
ferent data features by adjusting the contour of visualisation and
sonification selection boxes. The platform offers six dedicated
synthesisers based on filtering noise signals, mapping frequency
to pitch in wave oscillators, applying ASDR envelopes to a sound
signal, and varying the intervallic distance between two oscillators,
where incoming data control all sound parameters. Additionally,
the tool offers a data audification option for auditory display.

Sonifigrapher [12] is a synthesiser defined as a graph-to-sound
converter. It uses light curves from NASA’s publicly available ex-
oplanet archive as a graphic source for sonification. Programmed
in CSound, Sonifigrapher uses additive synthesis to generate con-
trolled audio spectra for sonification.

sc3nb [2] is a Python package integrating the SuperCollider
programming environment into Jupyter Notebook, enabling inter-
active control and sound synthesis for data-to-sound displays. The
project includes TimedQueues, an event dispatcher that facilitates
audiovisual displays by connecting sc3nb with Python libraries
with visualisation functionalities such as matplotlib. The goal of
the project is to provide an accessible and flexible coding system
for auditory data science.

WebAudioXML Sonification ToolKit [13] is an open-source,
web-based tool programmed in JavaScript using WebAudioXML
for audio synthesis. It provides a highly accessible web plat-
form for exploring data via visualisation of selected features and
parameter-based sonification of those features. The goal of the
project is to make data-to-sound display available to a broader au-
dience, including non-experts. Users import data, visualise it, map
data variables to audio parameters, and listen to the sonification
directly in their web browsers.

SuperCollider’s Class Library Port [4] is a fully functional
port of the client side SuperCollider’s class library from sclang
to Python. It preserves the original architectural features of Su-
perCollider. The goal is to provide a flexible and comprehensive
Python-based system for sound and music computing, harvesting
SuperCollider’s sound synthesis capabilities and taking advantage
of the integration with other Python libraries.

SoniScope [14] is an interactive sonification tool using the
Jupyter Notebook environment, D3.js for visualisation, and Su-
perCollider for audio synthesis, programmed in Python and
JavaScript. It combines a scatterplot visualisation with parameter-
based sonification for exploring multivariate data, displaying two
dimensions on the visual representation - x and y axis - and soni-
fying two features as pitch and onset. The interface allows users
to select features assigned to each visual and sound parameter.

2.2. Interactivity & Artificial Life

The integration of interactive sonification and visualisation with
artificial life presents a fertile ground for a wide range of appli-
cations, for example in understanding the emergent properties of
collective behaviors, such as flocking, schooling, or swarming, can
be enhanced by sonification. This approach aids scientific inquiry
and also serves as inspiration for new musical compositions and in-
teractive art installations [16, 17], bridging the gap between infor-
mative sonification/visualisation and artistic expression. We have
also explored conceptualising artificial life systems as a form of
musical notation, we propose an innovative approach to interactive
scores, where the behavior of artificial entities and their interac-
tions serve as the basis for generating and manipulating notational
material in real-time [18]. Finally, by sonifying the data, train-
ing process, outputs and behaviors of AI models, we can provide
auditory cues that complement visual explanations, thus offering
a more holistic understanding of AI’s decision-making processes
[19, 20].

3. IMPLEMENTATION

SignalFlow [6] is a sound synthesis framework that enables real-
time interaction with an audio signal processing graph via standard
Python syntax and data types, and Tölvera [7] is a library for com-
posing self-organising systems, with integrated open sound con-
trol, interactive machine learning, and computer vision. In this
section we provide an overview of both of these libraries, and then
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demonstrate basic ways of integrating them. Later, in Section 5.1,
we describe current limitations.

3.1. SignalFlow

SignalFlow [6] is a Python framework for audio signal processing,
designed for intuitive expression and exploration of sonic ideas.
Its core is implemented in cross-platform C++, with a Python API
that allows DSP primitives (oscillators, operators, filters) to be cre-
ated, connected and modulated in real-time. The inputs and out-
puts of the processing graph utilises native Python I/O and data
types, meaning that it can interoperate seamlessly with existing
packages for data science tasks such as sonification.

Below is a minimal SignalFlow example. Here, we create and
immediately start the audio processing graph, construct a stereo
sine oscillator with a short envelope, connect the oscillator to the
graph’s output, and run the graph indefinitely.

from signalflow import *

graph = AudioGraph()
sine = SineOscillator([440, 880])
envelope = ASREnvelope(0.1, 0.1, 0.5)
output = sine * envelope
output.play()

This demo shows a few syntactical benefits that SignalFlow
provides to make it easy to work with audio:

• The 2-item array of frequency values passed to
SineOscillator is expanded to create a stereo, 2-channel
output. Passing a 10-item array would result in a 10-channel
output.

• Mathematical operators such as * can be used to multiply,
add, subtract or divide the output of nodes, and creates a new
output Node that corresponds to the output of the operation.
This example uses an envelope to modulate the amplitude of
an oscillator.

• Although the envelope is mono and the oscillator is stereo,
SignalFlow automatically up-mixes the envelope’s values to
create a stereo output, so that the same envelope shape is ap-
plied to the L and R channels of the oscillator, before creating
a stereo output.

For auditory display of offline datasets such as time series, Sig-
nalFlow recognises vector data types such as numpy arrays, which
can be map For online mapping as presented in this paper, the pa-
rameters of the graph can be modulated in real-time, providing a
live, audible portrayal of properties of a dynamical system.

3.2. Tölvera

Tölvera [7] is a Python library designed for composing together
[23] and interacting with basal [24] agencies [25]. It provides cre-
ative coding-style APIs that allow users to combine and compose
various built-in behaviours, such as flocking, slime mold growth,
and swarming, and also author their own. With built-in support
for Open Sound Control (OSC)5 and interactive machine learning
(IML)6, Tölvera interfaces with existing music software and hard-

5https://github.com/Intelligent-Instruments-Lab/
iipyper

6https://github.com/Intelligent-Instruments-Lab/
anguilla

ware, striving to be an accessible and powerful tool for exploring
diverse intelligence [26] in artistic contexts.

A basic Tölvera program that displays a window, and a multi-
species particle simulation exhibiting flocking behaviour, can be
achieved with just a few lines of code:

from tolvera import Tolvera, run

def main(**kwargs):
tv = Tolvera(**kwargs)

@tv.render
def _():

tv.px.diffuse(0.99)
tv.v.flock(tv.p)
tv.px.particles(tv.p, tv.s.species())
return tv.px

if __name__ == '__main__':
run(main)

In Python, Tölvera is instanced as tv, and its main features are
all available via the following sub-objects:

tv.p: Multi-species particle system, where each has a unique re-
lationship with every other species, including itself.

tv.s: Declarative-style global dictionary of n-dimensional
(ndarray) state structures that can be used by verur, includ-
ing built-in OSC and IML creation.

tv.v: A collection of behaviours/models including Move, Flock,
Slime and Swarm, with more being continuously added
(Figure 2). Verur can be combined and composed in var-
ious ways.

tv.px: Drawing library including various shapes and blend
modes, styled similarly to p5.js.

tv.ti: GPU simulation and rendering engine via Taichi7 [27].
Can be run headless (without graphics).

tv.osc: Open Sound Control (OSC) via iipyper
8, including au-

tomated export of OSC schemas to JSON, XML, Pure Data
(Pd), and Max/MSP.

tv.iml: Declarative-style global dictionary of interactive ma-
chine learning instances via anguilla

9.

tv.cv: computer vision integration based on OpenCV and Medi-
apipe10.

3.3. SignalFlow-Tölvera Integration

We can combine the SignalFlow and Tölvera examples above,
sonifying a Tölvera particle’s position on the x-axis by mapping
it to a sine oscillator’s frequency in SignalFlow, with the two event
loops output.play() and @tv.render not interferring with each
other:

import signalflow as sf
from tolvera import Tolvera, run

def main(**kwargs):
tv = Tolvera(**kwargs)

7https://taichi-lang.org/
8https://github.com/Intelligent-Instruments-Lab/

iipyper
9https://github.com/Intelligent-Instruments-Lab/

anguilla
10https://developers.google.com/mediapipe

https://github.com/Intelligent-Instruments-Lab/iipyper
https://github.com/Intelligent-Instruments-Lab/iipyper
https://github.com/Intelligent-Instruments-Lab/anguilla
https://github.com/Intelligent-Instruments-Lab/anguilla
https://taichi-lang.org/
https://github.com/Intelligent-Instruments-Lab/iipyper
https://github.com/Intelligent-Instruments-Lab/iipyper
https://github.com/Intelligent-Instruments-Lab/anguilla
https://github.com/Intelligent-Instruments-Lab/anguilla
https://developers.google.com/mediapipe
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(a) No behaviour (b) tv.v.move() (c) tv.v.attract() (d) tv.v.repel() (e) tv.v.noise()

(f) tv.v.flock()
boids [21]

(g) tv.v.slime()
physarum

(h) tv.v.rd()
reaction-diffusion

(i) tv.v.plife()
particle life

(j) tv.v.swarm()
swarmalators [22]

Figure 2: Examples of behaviours and models available via tv.v. Top row: stateless tv.v. Bottom row: stateful tv.v.

graph = sf.AudioGraph()
sine = sf.SineOscillator(440)
stereo = sf.StereoPanner(sine, 0.0)
output = sine * 0.1
output.play()

def update():
pos = tv.p.field[0].pos
sine.frequency = 100+(pos[0]*(1000-100))/tv.x

@tv.render
def _():

update()
tv.px.diffuse(0.99)
tv.v.flock(tv.p)
tv.px.particles(tv.p, tv.s.species())
return tv.px

if __name__ == '__main__':
run(main)

Figure 3: Diagram of data interoperation between SignalFlow
and Tölvera: SignalFlow processes data inside its AudioGraph on
the CPU, and Tölvera processes Taichi fields on the GPU, with
NumPy ndarrays being the bridge between them.

Data interoperation (Figure 3) is possible without modify-
ing the underlying C++ engines of SignalFlow and Tölvera, via
NumPy’s N-dimensional array (ndarray):

From SignalFlow to Tölvera:

ti_buf = ti.ndarray(dtype=ti.f32,
shape=output.output_buffer.shape)↪→

ti_buf.from_numpy(output.output_buffer)

And from Tölvera to SignalFlow:

buf = Buffer(2, 1024)
ti_buf = ti.ndarray(dtype=ti.f32, shape=buf.data.shape)
ti_buf.fill(1)
buf.data = ti_buf.to_numpy()

Composition of behaviours can also be achieved, for example
by modulating Tölvera models’ weight parameter via SignalFlow
LFOs:

graph = AudioGraph()
lfo = SineLFO(0.5, 0, 10)
lfo.play()

@tv.render
def _():

tv.px.diffuse(0.99)
tv.v.move(tv.p, lfo.output_buffer[0][0])
tv.px.particles(tv.p, tv.s.species())
return tv.px

More elaborate examples are discussed in the next section.

4. EARLY CASE STUDIES

Initially, we have prioritised creative and artistic exploration of
SignalFlow-Tölvera integration, rather than problem-oriented an-
alytical and scientific tasks, though we eventually seek to explore
the middle ground between these two. Following Buxton11 [28],

11“[...] in the grand scheme of things, there are three levels of
design: standard spec., military spec., and artist spec. Most signif-
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we believe that creative contexts probe the possibility space in di-
verse and demanding ways, that are useful in early-stage perfor-
mance testing. Rather than defining a rigid workflow, we instead
sought to explore the broad compositional space through sketching
and artistic practice (Figure 4).

4.1. Creative Coding Examples

In the iil-examples footnote provided in Section 1 we offer a va-
riety of creative coding sketches that explore different possibilities
for integrating ALife with interactive sonification. These exam-
ples are organised into category folders, including at the time of
writing see, listen and behave. The folder see focuses on differ-
ent ways of accessing and drawing SignalFlow nodes and buffers,
listen focuses on sonification of Tölvera models and states, and
behave explores combinations of the two. We welcome readers to
try these examples and share feedback on their experiences.

4.2. Corpus-Based Granular Synthesis

A more complex example in the same repository demonstrates a
scenario where librosa [29] and sklearn [30] are used to per-
form principle component anlaysis (PCA) on Mel-frequency cep-
stral coefficients (MFCCs). The results of this analysis allow an
audio file to be decomposed into grains which can be triggered by
SignalFlow’s SegmentedGranulator class. These grains can then
be triggered to play using various approaches in Tölvera. For ex-
ample, a moving particle agent can represent a virtual microphone,
allowing the user to listen to the data by moving around the points.

4.3. Live Coding Performance

Live coding of SignalFlow and Tölvera is possible via Sardine12

[31], a recently proposed Python-based live coding environment.
Sardine enables live coding of Tölvera down to individual Taichi
GPU kernels, increasing interactivity of the programming experi-
ence. The main mechanism of Sardine is called a @swim function:

@swim
def number(p=0.5, i=0):

print(P('1 1+1 1*2 1/3 1%4 1+(2+(5/2))', i))
again(number, p=0.5, i=i+1)

@swims are temporally recursive functions, featuring iterators
(i=i+1) that can be used in a pattern language P("..."), thus the
above example will print the values of the pattern P based on the it-
erator value i every time Sardine schedules the function number. A
performance titled Gagnavera (“data being”, Figure 4b) was made
at Mengi in Reykjavík, Iceland in March 2024 based around three
@swim functions:

• render_loop: a live version of Tölvera’s @tv.render method.
• flock_loop: a SignalFlow saw oscillator bank mapped to

Tölvera particles.
• active_loop: Sardine P patterns controlling Tölvera particle

activity amounts.

Simply by writing patterns in the active_loop function, a
great deal of variation was achievable, as activating/deactivating

icantly, I learned that the third was the hardest (and most impor-
tant), but if you could nail it, then everything else was easy.”

12https://sardine.raphaelforment.fr/

particles or species would reshape the emergent dynamics. Usu-
ally in musical live coding the musician is directly editing sound
patterns, whereas this approach focused on perturbation of ecolog-
ical dynamics and their impact on sound. Listening is often high-
lighted as the most important activity in the live coding perception-
action loop, and the additional complexity of the loop in this case
necessitated a different kind of listening.

4.4. Gestural Performance with Computer Vision

As part of a CAMP13 workshop, a performance titled Sveimivera
(“hover being”, Figure 4c) was made. In this performance, five
pairs of saw oscillators were mapped to particle XY positions to
imitate insect buzzing sounds and panned accordingly. These os-
cillators were also visualised as a Lissajous curve that tracked the
particle positions. Mediapipe hand tracking was then used to at-
tract the five oscillator pairs towards the performer’s fingertips,
with their sounds also modulating based on their proximity to their
target fingertip. This setup allowed the performer to create sonic
variations based on different hand gestures and kinds of move-
ment, as well as hiding the hand from the tracker and allowing
the oscillators to flock amongst themselves. Similarly to the live
coding example, controlling sound indirectly creates an interesting
set of complex dependencies that the performer is encouraged to
explore and to navigate.

5. DISCUSSION

This preliminary investigation has established the feasibility of
combining SignalFlow and Tölvera in order to pave the way for
deeper studies into the potential of combining ALife with real-time
interactive sonification. Both more breadth and depth of work are
required to fully realise this potential. Although we have partly
chosen Python as our target language for its AI ecosystem, we
have yet to combine our approach with frameworks like PyTorch
or JAX, though this is already possible in Taichi14. This is high on
our list of priorities, along with collaborations with professional
data analysts and scientists. Surveying our work so far, in this
section we describe the technical limitations at our current stage
of development. Then, we attempt to address what our early ex-
periences point towards as directions for ongoing research, and
implications for multimodal display.

5.1. Technical Limitations

The integration between SignalFlow and Tölvera is at an early
stage and can be improved in a number of different ways. Mainly,
the way data is accessed and memory is shared between the two
can be improved, with lower-level integrations on both sides. In
SignalFlow, a dedicated Tölvera Node could provide a simple API
for passing in Tölvera state and arbitrary Taichi data containers
into the SignalFlow context. In Tölvera, dedicated utility functions
would provide the inverse, allowing SignalFlow audio buffers and
other data to be easily manipulated inside Taichi’s GPU scope.

Another area that can be improved is temporal synchronisa-
tion. Although SignalFlow can provide a clock signal based on its
Impulse Node, it lacks a dedicated scheduler, and Tölvera lacks a
stable framerate. Currently, it is not currently possible for Tölvera

13http://campfr.com
14https://docs.taichi-lang.org/docs/external

https://sardine.raphaelforment.fr/
http://campfr.com
https://docs.taichi-lang.org/docs/external
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(a) Corpus-Based Granular Synthesis example (b) Gagnavera (March 2024) (c) Sveimivera (May 2024)

Figure 4: Examples discussed in Section 4.

to know which sample in a SignalFlow buffer is currently be-
ing played (in the LFO example, Tölvera reads the first sample
in the buffer lfo.output_buffer[0][0]), and SignalFlow cannot
trigger Tölvera functions via callbacks. Aside from implement-
ing a scheduler natively in SignalFlow, one possibility is to instead
borrow one, potentially from Sardine [31].

5.2. Synthetic Behaviour as Display Modality

What does ALife offer to multimodal display? The term ALife at
this point carries a lot of connotations based on its >30 year his-
tory. To circumnavigate this, we have found it useful to consider
ALife as specifically affording synthetic behaviour as an interac-
tive display modality. In the same way that visualisation and soni-
fication engage our perception to convey information and feelings,
synthetic behaviour makes use of human perception of complex,
collective and emergent dynamics to communicate. In display, we
commonly think of auditory, visual, and audiovisual icons, and
with ALife we might also consider behavioural icons that vibrate,
cluster, flock, swarm, spin, spiral and gesticulate. It follows that
behavioural grammars could conceivably be designed based on
research about human perception of motion and agency. Indeed,
appropriate taxonomies and grammars of behaviour likely already
exist in other fields, waiting to be tested in this context.

5.3. Spectrums of Interaction

In addition, we think ALife also implies a broader perspective on
interaction in multimodal display. As the term itself suggests, in
human-computer interaction (HCI) it is common to rigidly assume
a bidirectional interaction between two entities: human and com-
puter. In interactive sonification, this assumption is often carried
over: a user interacts with data and perceives it as sound, in a
perception-action cycle. In ALife however, interactions are hap-
pening at multiple scales of granularity and between entities of
varying levels of sophistication, which are usually a combination
of human and non-human agents. ALife can give individual data
points extended agency beyond visual and auditory display, allow-
ing them to move, transform and respond to their environment and
other inputs. Thus the lines between data, agent and observer be-
come blurred. This theme has been prevalent throughout HCI in
calls for more-than-human accounts and interfaces that start from
ecological and relational perspectives, inspired particularly by the
work of Barad on agential realism [32]. We discuss these themes
more in our upcoming NIME 2024 paper [7].

6. CONCLUSION

We presented a Python-based workflow for creation of integrated
interactive sonification and visualisation projects that make use
of artificial life, based on the combination of two libraries, Sig-
nalFlow and Tölvera. SignalFlow enables real-time interaction
with audio signal processing, harnessing the familiar syntax and
data types of Python for intuitive sound synthesis. Tölvera’s capa-
bilities in visualising and simulating artificial life systems, cou-
pled with features such as open sound control, interactive ma-
chine learning, and computer vision, show potential for creative
and insightful explorations of self-organising systems. We high-
lighted a variety of application areas ripe for exploration through
this integration, including the development of interactive audiovi-
sual interfaces, the audiovisual display of collective behavior, and
the augmentation of traditional sonification and visualisation prac-
tices with artificial life techniques. The next steps in our work in-
volve extending and refining the integration between SignalFlow
and Tölvera, ensuring smoother workflows and broader applicabil-
ity in future work.

7. ACKNOWLEDGEMENTS

Jack Armitage would like to thank the Timbre Garden hackthon
team – Eloi Marín Gratacós, Ivan Meresman Higgs, Farida Yusuf
and Cláudio Lemos – and the Taichi developers and community.
Jack Armitage is the creator of Tölvera and led both the Tölvera-
SignalFlow integration and the writing and editing of this paper.
Daniel Jones is the creator of SignalFlow and contributed to the
Tölvera-SignalFlow integration and writing of this paper. Miguel
Crozzoli contributed to the literature review and editing of this pa-
per. The Intelligent Instruments project (INTENT) is funded by the
European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (Grant agree-
ment No. 101001848).

8. REFERENCES

[1] K. Enge, E. Elmquist, V. Caiola, N. Rönnberg, A. Rind,
M. Iber, S. Lenzi, F. Lan, R. Höldrich, and W. Aigner,
“Open Your Ears to Take a Look: A State-of-the-Art Re-
port on the Integration of Sonification and Visualization,” no.
arXiv:2402.16558, Feb. 2024.

[2] T. Hermann and D. Reinsch, “Sc3nb: A Python-
SuperCollider Interface for Auditory Data Science,” in Audio
Mostly 2021, Trento, Italy, September 2021, pp. 208–215.



The 29th International Conference on Auditory Display (ICAD 2024) June 24 – 28, 2024, Troy, NY, USA

[3] D. Jones, “Python client for the supercollider audio synthesis
server,” https://github.com/ideoforms/python-supercollider/,
2019.

[4] L. Samaruga and P. Riera, “A port of the SuperCollider’s
class library to Python,” in Proceedings of the 17th Inter-
national Audio Mostly Conference, ser. AM ’22, New York,
NY, USA, Oct. 2022, pp. 137–142.

[5] J. Heer and D. Moritz, “Mosaic: An architecture for scalable
& interoperable data views,” IEEE Trans. Visualization &
Comp. Graphics (Proc. VIS), 2024. [Online]. Available:
http://idl.cs.washington.edu/papers/mosaic

[6] D. Jones, “Signalflow,” https://signalflow.dev/, 2023.

[7] J. Armitage, V. Shepardson, and T. Magnusson, “Tölvera:
Composing With Basal Agencies,” in Accepted for Proc.
New Interfaces for Musical Expression, Utrecht, Nether-
lands, Sep 2024.

[8] H. Zhao, C. Plaisant, and B. Shneiderman, “iSonic: Interac-
tive sonification for non-visual data exploration,” in Proceed-
ings of the 7th International ACM SIGACCESS Conference
on Computers and Accessibility, Baltimore MD USA, Oct.
2005, pp. 194–195.

[9] F. Dombois, “Sonifyer a concept, a software, a platform,”
in Proceedings of the 14th International Conference on Au-
ditory Display (ICAD 2008), Paris, France, June 2008, pp.
1–4.

[10] J. Cherston and J. A. Paradiso, “Rotator: Flexible distribu-
tion of data across sensory channels,” in Proc. 23rd Interna-
tional Conference on Auditory Display (ICAD 2017), Penn-
sylvania, USA, June 2017.

[11] S. Phillips and A. Cabrera, “Sonification workstation,” in
The 25th International Conference on Auditory Display,
Newcastle-upon-Tyne, UK, June 2019, pp. 184–190.

[12] A. G. Riber, “Sonifigrapher. sonified light curve synthesizer,”
in Proc. 25th International Conference on Auditory Display
(ICAD 2019), Newcastle-upon-Tyne, UK, June 2019, pp. 62–
66.

[13] H. Lindetorp and K. Falkenberg, “Sonification for every-
one everywhere: Evaluating the webaudioxml sonification
toolkit for browsers,” in The 26th International Conference
on Auditory Display (ICAD 2021), Online, June 2021, pp.
15–21.

[14] K. Enge, A. Rind, M. Iber, R. Höldrich, and W. Aigner, “To-
wards Multimodal Exploratory Data Analysis: SoniScope as
a Prototypical Implementation.” in EuroVis (Short Papers),
Rome, Italy, June 2022, pp. 67–71.

[15] H. Kim, Y.-S. Kim, and J. Hullman, “Erie: A Declarative
Grammar for Data Sonification,” in Proceedings of the CHI
Conference on Human Factors in Computing Systems, ser.
CHI ’24, New York, NY, USA, May 2024, pp. 1–19.

[16] T. F. Tavares, T. R. P. Pessanha, G. Nishihara, and G. Z. L.
Avila, “Alloy Sounds: Non-Repeating Sound Textures with
Probabilistic Cellular Automata,” in 2021 24th International
Conference on Digital Audio Effects (DAFx), Surrey, UK,
September 2021, pp. 245–252.

[17] D. Jones, “AtomSwarm: A Framework for Swarm Improvi-
sation,” in Workshops on Applications of Evolutionary Com-
putation, vol. 4974, Berlin, Heidelberg, 2008, pp. 423–432.

[18] J. Armitage and T. Magnusson, “Agential Scores: Exploring
Emergent, Self-Organising and Entangled Music Notation,”
in Proceedings of the 8th International Conference on Tech-
nologies for Music Notation and Representation, Northeast-
ern University, Boston, Massachusetts, USA, 2023.

[19] B. W. Schuller, T. Virtanen, M. Riveiro, G. Rizos, J. Han,
A. Mesaros, and K. Drossos, “Towards Sonification in Multi-
modal and User-friendlyExplainable Artificial Intelligence,”
in Proceedings of the 2021 International Conference on Mul-
timodal Interaction, Montréal QC Canada, Oct. 2021, pp.
788–792.

[20] A. Akman and B. W. Schuller, “Audio Explainable Artificial
Intelligence: A Review,” Intelligent Computing, vol. 3, p.
0074, Jan. 2024.

[21] C. W. Reynolds, “Flocks, herds and schools: A distributed
behavioral model,” in Proceedings of the 14th Annual Con-
ference on Computer Graphics and Interactive Techniques,
Aug 1987, pp. 25–34.

[22] K. P. O’Keeffe, H. Hong, and S. H. Strogatz, “Oscillators
that sync and swarm,” Nature Communications, vol. 8, no. 1,
p. 1504, Nov. 2017.

[23] J. Horowitz and J. Heer, “Live, Rich, and Compos-
able: Qualities for Programming Beyond Static Text,” no.
arXiv:2303.06777, Mar. 2023.

[24] P. Lyon, F. Keijzer, D. Arendt, and M. Levin, “Reframing
cognition: Getting down to biological basics,” Philosophi-
cal Transactions of the Royal Society B: Biological Sciences,
vol. 376, no. 1820, p. 20190750, Jan. 2021.

[25] J. Davies and M. Levin, “Synthetic morphology with agential
materials,” Nature Reviews Bioengineering, vol. 1, no. 1, pp.
46–59, Jan. 2023.

[26] M. Levin, “Technological Approach to Mind Everywhere:
An Experimentally-Grounded Framework for Understand-
ing Diverse Bodies and Minds,” Frontiers in Systems Neu-
roscience, vol. 16, p. 768201, 2022.

[27] Y. Hu, T.-M. Li, L. Anderson, J. Ragan-Kelley, and F. Du-
rand, “Taichi: A language for high-performance computa-
tion on spatially sparse data structures,” ACM Transactions
on Graphics, vol. 38, no. 6, pp. 1–16, Dec. 2019.

[28] B. Buxton, “Artists and the art of the luthier,” ACM SIG-
GRAPH Computer Graphics, vol. 31, no. 1, pp. 10–11, 1997.

[29] B. McFee, C. Raffel, D. Liang, D. P. W. Ellis, M. McVicar,
E. Battenberg, and O. Nieto, “Librosa: Audio and Music Sig-
nal Analysis in Python,” in Proceedings of the 14th Python
in Science Conference (SciPy 2015), Austin, TX, July 2015,
pp. 18–24.

[30] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
and V. Dubourg, “Scikit-learn: Machine learning in Python,”
the Journal of machine Learning research, vol. 12, pp. 2825–
2830, 2011.

[31] R. Forment and J. Armitage, “Sardine: A Modular Python
Live Coding Environment,” in International Conference on
Live Coding, Utrecht, Netherlands, April 2023.

[32] K. Barad, Meeting the Universe Halfway: Quantum Physics
and the Entanglement of Matter and Meaning, 2007.

http://idl.cs.washington.edu/papers/mosaic

	 Introduction
	 Background
	 Integrating Sonification & Visualisation
	 Interactivity & Artificial Life

	 Implementation
	 SignalFlow
	 Tölvera
	 SignalFlow-Tölvera Integration

	 Early Case Studies
	 Creative Coding Examples
	 Corpus-Based Granular Synthesis
	 Live Coding Performance
	 Gestural Performance with Computer Vision

	 Discussion
	 Technical Limitations
	 Synthetic Behaviour as Display Modality
	 Spectrums of Interaction

	 Conclusion
	 Acknowledgements
	 References

